Các cuộc khảo sát ý kiến chắc chắn có một vị trí quan trọng nhất định trong marketing, nhưng không phải lúc nào nó cũng cung cấp các thông tin chân thực về phản hồi hành vi khách hàng thông qua phân tích dữ liệu web của bạn có được. Nguyên nhân là do các cuộc khảo sát ý kiến giới thiệu những thành kiến của con người theo cách mà dữ liệu hành vi thô trong phân tích dữ liệu web không có.
A/B Test (hay A/B Split Test) là một phương pháp thử nghiệm 2 phiên bản (A và B) về giao diện hoặc cách bố trí nội dung, các nút căn chỉnh điều hướng, vị trí đặt hình ảnh, nút mua hàng của một website bán hàng. Mục đích cuối cùng là để kiểm tra xem khách hàng thích cách bài trí nào hơn, đặt các nút ở vị trí nào làm tăng tỉ lệ khách hàng, thu hút nhiều lượt xem hơn…
Khi sự thu hút khách hàng đang ngày càng bị thu hẹp trong khi sự cạnh tranh trực tuyến đang ngày càng gay gắt. Vì vậy, các nhà làm marketing cần phải hiểu rõ về tỉ lệ chuyển đổi tối ưu hóa (CRO).
CRO là một trong những khía cạnh quan trọng nhất của một chiến lược tiếp thị kĩ thuật số, bởi tỉ lệ chuyển đổi là thước đo duy nhất có sự tương quan tới tỉ lệ hoàn vốn ROI.
Ngay cả khi một khách hàng “chuyển đổi” ngay trên website của bạn nhưng không giống như việc mua sắm hàng hóa, dịch vụ (ví dụ như đăng kí bản tin) thì các quy tắc CRO vẫn còn áp dụng đúng.
Thật sai lầm khi nhắc đến việc thực hiện một kế hoạch CRO mà bạn lại chỉ liên tưởng đến việc thay đổi màu sắc trên nút button, thêm bằng chứng xã hội, hoặc rút ngắn nội dung trang web bao gồm cả gaminification (tạm dịch là yếu tố game để tạo sự thích thú, vui nhộn)…
A/B test là phương pháp nhằm giúp các nhà lập trình, marketing, các doanh nghiệp lắng nghe khách hàng tốt hơn và nhờ đó, mang lại những trải nghiệm tuyệt vời hơn cho khách hàng của họ.
Người ta thường đưa ra giả định về đối tượng khách hàng dựa trên độ tuổi, giới tính, khu vực địa lý hoặc thu nhập. Trước đây, hồ sơ khách hàng là cách tốt nhất và duy nhất để xác định khách hàng mục tiêu và nó vẫn chiếm một vị trí quan trọng trong marketing. Tuy nhiên, trong thời đại kĩ thuật số, chúng tôi có nhiều sự lựa chọn hơn. Không còn phải dựa vào phân đoạn để cung cấp những trải nghiệm cá nhân hóa, chúng ta vẫn có khả năng tận dụng mọi công cụ kĩ thuật số như một cơ hội để tìm hiểu về sở thích của khách hàng trên cơ sở một – một.
Tăng tỉ lệ chuyển đổi là mục tiêu trước mắt của bạn và nếu bạn đang như tôi thì đừng vội nhé. Trước khi nhảy vào một thử nghiệm A/B Test thì điều quan trọng bạn cần lưu ý đến chính là ngân sách, thời gian để thiết lập một mục tiêu đo lường. Nếu bạn không biết tỉ lệ chuyển đổi hiện tại của bạn là bao nhiêu và làm thế nào để biết được tỉ lệ chuyển đổi trong tương lai là thành công? (xem thêm ở nguyên tắc 5).
Nếu CRO là một quá trình lặp lại những công việc như nhau trên mỗi website vào mọi lúc, thì sẽ không có nhu cầu để thử nghiệm tất cả. Các nhà marketing sẽ biết cách làm thế nào để tất cả các website thương mại điện tử thực hiện và tất cả mọi người sẽ thực hiện theo các quy tắc tương tự.
Nếu các trường hợp xảy ra trong một thế giới đầy sự giống nhau thì sẽ dẫn đến sự nhàm chán, nên đó là lí do vì sao bạn phải thực hiện A/B Test trên những nội dung độc đáo của riêng bạn dành cho những độc giả của riêng mình. Chắc chắn rằng, bạn có thể học hỏi những ý tưởng từ những người đã thực hiện CRO khác, nhưng không nên quá mong đợi kết quả tương tự.
Ví dụ, giả sử công ty ABC bán dây giày và công ty XYZ bán các ứng dụng phần mềm doanh nghiệp. Rõ ràng, chu kì mua sắm sẽ khác nhau hoàn toàn giữa hai công ty, thậm chí khi họ có cùng chung khách hàng. Công ty ABC có thể phát hiện rằng việc thay đổi màu sắc nút CTA (Call To Action) từ màu đỏ sang màu xanh thì doanh số bán hàng sẽ tăng 75%. Tuy nhiên, nó không có nghĩa là công ty XYZ sẽ có được kết quả tương tự.
Việc thử nghiệm người dùng chưa bao giờ quan trọng hơn và cũng chưa bao giờ dễ dàng thực hiện. Thậm chí nếu bạn không có một phòng ban xa xỉ chuyên nghiên cứu về sự trải nghiệm của người dùng thì bạn vẫn có thể sử dụng những dịch vụ miễn phí hoặc với chi phí thấp để cung cấp các tiện ích thử nghiệm A/B Test, ví dụ:
Peek User Testing: Peek là một dịch vụ cực kì dễ dàng và nhanh chóng để thu thập các phản hồi về chất lượng trên website của bạn.
Điểm mấu chốt: có được một vài phản hồi sẽ tốt hơn là không có bất kì phản hồi nào.
Các cuộc khảo sát ý kiến chắc chắn có một vị trí quan trọng nhất định trong marketing, nhưng không phải lúc nào nó cũng cung cấp các thông tin chân thực về phản hồi hành vi khách hàng thông qua phân tích dữ liệu web của bạn có được. Nguyên nhân là do các cuộc khảo sát ý kiến giới thiệu những thành kiến của con người theo cách mà dữ liệu hành vi thô trong phân tích dữ liệu web không có.
Ví dụ, hãy tưởng tượng bạn đang vội để in những tài liệu quan trọng cho cuộc họp. Bạn phát hiện các hộp mực cần phải được thay mới. Bây giờ, nếu tôi hỏi bạn cách xử lí tình huống cụ thể này như thế nào?
Trước khi đọc thêm, bạn hãy dừng lại và suy nghĩ về câu trả lời trung thực của mình nhé.
Bạn có thể nói bạn sẽ thay đổi hộp mực và tiếp tục in ấn tài liệu của mình. Nếu đây là một cuộc khảo sát thì tôi sẽ chấp nhận câu trả lời của bạn.
Trong một môi trường thử nghiệm người dùng thì tôi xin lưu ý rằng bạn đã đá máy in 4 lần, xóa kẹt giấy và nhấn nút hủy bỏ 7 lần và sau đó bạn mới thay đổi hộp mực. Trong khi sắp xếp tài liệu, bạn làm đổ café trên người, bạn đã thất vọng và đã phải chuyển cuộc họp vào lúc khác.
Điều này dễ hiểu với nhiều người nhưng đáng nói bởi vì nó rất quan trọng. Khi thực hiện A/B Test trên website, thì việc kiểm tra một yếu tố tại một thời điểm để có được kết quả cuối cùng. Nếu bạn thay đổi tiêu đề cùng một lúc với thay đổi sự điều hướng thì làm thế nào bạn biết được yếu tố nào đã đóng góp nhiều nhất đến sự thay đổi chuyển đổi?
Trong A/B Test, số liệu thống kê chính xác liên quan đến xác suất xảy ra nhiều kết quả có thể kì vọng nếu như các thử nghiệm giống nhau được áp dụng lại trong tương lai. Nói cách khác, nó sẽ giúp bạn có sự tự tin vào các kết quả thử nghiệm của bạn.
Ví dụ, hãy nói rằng bạn thực hiện A/B Test trên trang có giỏ hàng mua sắm của bạn: “A” là việc sử dụng các nút chọn và “B” là sử dụng các menu thả xuống. Chúng ta hãy nói rằng “B” tạo ra một lực nâng 75% tỷ lệ chuyển đổi. Rõ ràng, B là người chiến thắng có phải không?
Không hẳn thế, Có ba dữ kiện để xem xét:
Câu tục ngữ này đúng trong nhiều lĩnh vực kinh doanh, và A/B Test thì cũng không ngoại lệ. Những nhận thức và mong đợi của khách hàng luôn luôn thay đổi, vì vậy CRO đã, đang và sẽ di chuyển mục tiêu. Bạn sẽ mắc phải lỗi. Bạn nên học hỏi từ những sai lầm đó và từ những rèn luyện bạn sẽ trở thành chuyên gia A/B Test.
Không bao giờ đánh mất tiêu chuẩn thành công cuối cùng của bạn. CRO là về chuyển đổi. Nó không phải là về tỉ lệ mở, tỉ lệ nhấp chuột, tweet, chia sẻ hoặc ghim nội dung. Trừ khi, tweet và ghim nội dung là “chuyển đổi” trên website của bạn.
Điểm mấu chốt: xác định một mục tiêu rõ ràng trong tâm trí và tối ưu hóa nội dung của bạn xung quanh mục tiêu đó. Mọi thứ khác là một chỉ số đánh giá hiệu quả công việc (KPI).
Câu nói này lúc trước được sử dụng cho thư trực tiếp, và ngày nay nó vẫn đúng cho marketing online. Tránh việc thử nghiệm các yêu tố rất nhỏ mà ít có cơ hội thay đổi đáng kể. Sử dụng những cách thông thường, tin vào trực giác của bạn và tập trung vào các bài kiểm tra có sức ảnh hưởng cao.
CRO không chỉ là nhận được nhiều hơn việc mọi người nhấn nút mà là việc cung cấp các nội dung hướng đến đúng đối tượng và khuyến khích họ nhấp vào nút bên phải vào đúng thời điểm. Nếu bạn đã dùng A/B Test toàn bộ trang web của bạn, tối ưu hóa dựa trên các dữ liệu, và tỉ lệ chuyển đổi của bạn vẫn còn thấp hơn bạn muốn, có lẽ bạn đang đo lường sai các thiết lập số liệu.
Ví dụ, hãy nói rằng bạn sở hữu một cupcake cho người sành ăn và website của bạn có tỉ lệ chuyển đổi là 2%. Trong ví dụ này, một khách hàng đặt bánh là “chuyển đổi”. Dưới đây là một số câu hỏi để bạn tự trả lời:
Ngoài chức năng cơ bản như tốc độ và tối ưu hóa di động, không có chân lý duy nhất hoặc bí quyết độc nhất để tăng CRO. Cách duy nhất để biết chắc chắn những gì hoạt động với đối tượng của bạn là hãy chạy một loạt các thử nghiệm A/B Test và sau đó sẵn sàng thực hiện những thay đổi dựa trên cơ sở dữ liệu.